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Supplementary Figure 1. RNA fragment analysis of human mt-tRNAs. 

Base peak chromatogram (BPC) for each tRNA digested by RNase T1 (left panels) and 

RNase A (right panels). All assigned fragments (numbered) listed in Supplementary 

Data 1. 



 

 

Supplementary Figure 2. Cyanoethylation of τm5s2U34 

(a) CID spectrum of a di-cyanoethylated fragment from human mt-tRNAGln. The doubly 

charged negative ion of the RNA fragment (m/z 1251.1) was used as a precursor for 

CID. Assignment of the product ions revealed two cyanoethylation sites at Ψ33 and 

τm5s2U34. Asterisks marked on the product ions indicate the number of 

cyanoethylations.  

(b) CID spectra (left panels) of the cyanoethylated m5s2U and m5U nucleosides [ce-

m5(s2)U] indicate that cyanoethylation occurs at the N atom in the taurine moiety. The 

predicted chemical structure of the derivative and its dissociation patterns, with m/z 

values of the product ions, are shown on the right. Assigned product ions are indicated 

by arrowheads in the CID spectra. 



 

 

Supplementary Figure 3. Cyanoethylation of Q34 

(a) CID spectrum of a di-cyanoethylated fragment from human mt-tRNAHis. The doubly 

charged negative ion of the RNA fragment (m/z 1092.7) was used as a precursor for 

CID. Assignment of the product ions revealed two cyanoethylation sites at Q34 and 

Ψ35. Asterisks marked on the product ions indicate the number of cyanoethylations.  

(b) CID spectrum (left panel) of the cyanoethylated Q34 nucleosides (ce-Q) indicates 

that cyanoethylation occurs at the N atom in the side chain. The predicted chemical 

structure of the derivative and its dissociation patterns, with m/z values of the product 

ions, are shown on the right. Assigned product ions are indicated by arrowheads in the 

CID spectrum. 

  



 

Supplementary Figure 4. CMC-PE analysis for detection of  sites in human mt-

tRNAs 

HeLa total RNA treated with (+) or without (-) CMC were reverse-transcribed with a 

primer specific for each human mt-tRNA. The sequence ladders for U and A were 

generated under the same conditions in the presence of ddATP and ddTTP, respectively. 

Positions of Ψs and sequence are shown with each gel image. Source data are provided 

as a Source Data file. 



 

 

Supplementary Figure 5. Post-transcriptional modifications in human mt-tRNAGlu, 

determined by the post-labeling method. 

Eight modifications in human mt-tRNAGlu were determined by 2D-TLC. The spot 

corresponding to each modification is indicated by an arrow. Separation patterns for 

unmodified nucleotide 5’-monophosphates (A, C, G and U) are indicated by ellipses. 

 

  



 

Supplementary Figure 6. Post-transcriptional modifications in all species of human 

mt-tRNAs. 



Supplementary Table 1. List of confirmed and predicted genes responsible for 

post-transcriptional modifications in human mitochondrial tRNAs 

 

Position 

a 

tRNA 

species 

Modific

ation b 

Confirmed 

gene(s) in human 

or mammals 

Predicted gene(s) in 

human 

Human 

diseases 

9 Ala, Asp, 
Glu, Phe, 
Gly, His, 
Lys, 
Leu(CUN), 
Asn, Pro, 
Arg, Thr, 
Val, Trp 

m1A MRPP1 and 
MRPP2 (formerly 
known as 
TRMT10C and 
SDR5C1, 
respectively) 1 

 HSD10 disease 2 

9 Cys, Ile, 
Leu(UUR), 
Gln, Tyr 

m1G MRPP1 and 
MRPP2 1 

 HSD10 disease 2 

10 Ala, Asp, 
Glu, Phe, 
Gly, His, 
Lys, 
Leu(UUR), 
Leu(CUN), 
Asn, Arg, 
Thr, Val, 
Trp, Tyr 

m2G  TRMT11 and 
TRMT112 3 

 

16 Arg m1A  TRMT61B 4,5  

20 Leu(UUR), 
Asn, Gln 

D  DUS2 6  

26 Ala, Glu, 
Arg 

m2G TRMT1 7  Intellectual 
disability 8,9 

26 Ile m2,2G TRMT1 7,10,11  Intellectual 
disability 8,9 

27 Cys, Asp, 
His, Ile, Lys, 
Leu(UUR), 
Leu(CUN), 
Met, Pro, 
Tyr 

 PUS1 12  MLASA 13 

28 Cys, Glu, 
Phe, Gly, Ile, 
Lys, 
Leu(CUN), 
Asn, 
Ser(UCN), 
Tyr 

 PUS1 12  MLASA 13 

31 Leu(CUN)   RPUSD1, 2, 3 or 4  

32 Cys, Pro, 
Arg 

  RPUSD1, 2, 3 or 4  



32 Ser(UCN), 
Thr 

m3C  METTL2A, 2B, 6 or 8 
14-16 

 

33 Gln   RPUSD1, 2, 3 or 4  

34 Leu(UUR), 
Trp, (Glu, 
Lys, Gln) 

m5U GTPBP3 and 
MTO1 17,18 

 MELAS (lack of 
m5U in mutant 
tRNALeu(UUR)) 
19,20 
Hypertrophic 

cardiomyopathy 
and lactic 
acidosis and 
encephalopathy, 
Leigh syndrome 
21,22 Hypertrophic 
cardiomyopathy 
and lactic 
acidosis 23-25 

34 Glu, Lys, 
Gln 

m5s2U c MTU1 c 26,27 and  NFS1 c 28 MERRF (lack of 
m5s2U in 
mutant tRNALys) 
29 
RILF 30-33 

34 Met f5C NSUN3 34-36 and 
ALKBH1 36,37 

 Combined 
mitochondrial 
respiratory 
chain complex 
deficiency 35 

34 Asp, His, 
Asn, Tyr 

Q QTRT1 and 
QTRT2 (This 
work) 

  

35 His   PUS7 38  

37 Ile, Lys, Asn, 
Ser(AGY), 
Thr 

t6A YRDC and 
OSGEPL1 39 

  

37 Cys, (Phe, 
Ser(UCN), 
Trp, Tyr) 

i6A TRIT1 40  Encephalopathy 
and myoclonic 
epilepsy with 
multiple 
OXPHOS 
deficiencies 41. 

37 Phe, 
Ser(UCN), 
Trp, Tyr 

ms2i6A d CDK5RAP1 d 42,43   

37 Ala, 
Leu(CUN), 
Pro, Gln 

m1G TRMT5 44,45  Multiple 
mitochondrial 
respiratory chain 
complex 
deficiencies 45 

38 Ala, Pro   PUS3 46  

39 Ala, Cys, 
Phe, Gly, 

 RPUSD4 e 47   



His, Gln, 
Arg, Val, Tyr 

40 Glu, Gly, 
Asn, Gln 

  PUS3  

48 Phe, His, 
Leu(UUR), 
Ser(AGY), 
Tyr 

m5C NSUN2 48,49  Intellectual 
disability 50-52 

49 Glu, 
Ser(AGY) 

m5C NSUN2 48,49  Intellectual 
disability 50-52 

50 Ser(AGY) m5C NSUN2 48,49 
 

 Intellectual 
disability 50-52 

50 Met   RPUSD4 47  

54 Leu(UUR), 
Asn, Pro, 
Gln, 
Ser(UCN) 

m5U TRMT2B 53,54   

55 Glu, 
Leu(UUR), 
Met, Asn, 
Pro, Gln, 
Ser(UCN) 

  TRUB2 55  

58 Cys, Lys, 
Leu(UUR), 
Ser(UCN) 

m1A TRMT61B 4   

66 Pro   PUS1  

67 Pro   PUS1 56  

68 Ala   PUS1  

 

a: The numbering system for tRNA refers to the tRNAdb compilation 57.  

b: Symbols for modifications originate from MODOMICS (http://modomics.genesilico.pl/) 58. 

c: MTU1 and NFS1 are involved in 2-thiolation of m5s2U34. MTU1 (Mitochondrial tRNA-

specific 2-thiouridylase 1) is also known as TRMU; the name originated from bacterial trmU 

(tRNA methyltransferase U). However, trmU (renamed mnmA) was mis-annotated, as it is not a 

tRNA methyltransferase. d: CDK5RAP1 is required for 2-methylthiolation of ms2i6A37 

following 6-isopentenylation of A37. e: The literature 47 described that 39 in tRNAGly was not 

affected by knockdown of the gene. 

MLASA, mitochondrial myopathy and dideroblastic anemia. MELAS, mitochondrial myopathy, 

encephalopathy, lactic acidosis and stroke-like episodes. MERRF, myoclonus epilepsy associated 

with ragged-red fibers. RILF, reversible infantile liver failure. 
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